Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs.

نویسندگان

  • Jef Vandemeulebroucke
  • Simon Rit
  • Jan Kybic
  • Patrick Clarysse
  • David Sarrut
چکیده

PURPOSE Four-dimensional computed tomography (4D CT) can provide patient-specific motion information for radiotherapy planning and delivery. Motion estimation in 4D CT is challenging due to the reduced image quality and the presence of artifacts. We aim to improve the robustness of deformable registration applied to respiratory-correlated imaging of the lungs, by using a global problem formulation and pursuing a restrictive parametrization for the spatiotemporal deformation model. METHODS A spatial transformation based on free-form deformations was extended to the temporal domain, by explicitly modeling the trajectory using a cyclic temporal model based on B-splines. A global registration criterion allowed to consider the entire image sequence simultaneously and enforce the temporal coherence of the deformation throughout the respiratory cycle. To ensure a parametrization capable of capturing the dynamics of respiratory motion, a prestudy was performed on the temporal dimension separately. The temporal parameters were tuned by fitting them to diaphragm motion data acquired for a large patient group. Suitable properties were retained and applied to spatiotemporal registration of 4D CT data. Registration results were validated using large sets of landmarks and compared to consecutive spatial registrations. To illustrate the benefit of the spatiotemporal approach, we also assessed the performance in the presence of motion-induced artifacts. RESULTS Cubic B-splines gave better or similar fitting results as lower orders and were selected because of their inherently stronger regularization. The fitting and registration errors increased gradually with the temporal control point spacing, representing a trade-off between achievable accuracy and sensitivity to noise and artifacts. A piecewise smooth trajectory model, allowing for a discontinuous change of speed at end-inhale, was found most suitable to account for the sudden changes of motion at this breathing phase. The spatiotemporal modeling allowed a reduction of the number of parameters of 45%, while maintaining registration accuracy within 0.1 mm. The approach reduced the sensitivity to artifacts. CONCLUSIONS Spatiotemporal registration can provide accurate motion estimation for 4D CT and improves the robustness to artifacts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4D PET: Beyond conventional dynamic PET imaging

  In this paper, we review novel techniques in the emerging field of spatiotemporal 4D PET imaging. We will discuss existing limitations in conventional dynamic PET imaging which involves independent reconstruction of dynamic PET datasets. Various approaches that seek to attempt some or all of these limitations are reviewed in this work, including techniques that util...

متن کامل

Design and Fabrication of a Four-Dimensional Respiratory Phantom for Studying Tumor Movement in Radiotherapy with Magnetic Resonance Imaging

Introduction: In radiation therapy, determining the location of the tumor accurately during irradiation is one of the most important requirements. However, lung tumors are not fixed in a single location and move during irradiation due to respiratory motion. Due to limitations in assessing such movements, using a lung phantom can be useful and operational for their fast, easy an...

متن کامل

Reducing the respiratory motion artifacts in PET cardiology: A simulation study

  Introduction: There are several technical features that make PET an ideal device for the noninvasive evaluation of cardiac physiology. Organ motion due to respiration is a major challenge in diagnostic imaging, especially in cardiac PET imaging. These motions reduce image quality by spreading the radiotracer activity over an increased volume, distorting apparent les...

متن کامل

Shape-correlated Deformation Statistics for Respiratory Motion Prediction in 4D Lung.

4D image-guided radiation therapy (IGRT) for free-breathing lungs is challenging due to the complicated respiratory dynamics. Effective modeling of respiratory motion is crucial to account for the motion affects on the dose to tumors. We propose a shape-correlated statistical model on dense image deformations for patient-specic respiratory motion estimation in 4D lung IGRT. Using the shape defo...

متن کامل

Free-breathing dynamic magnetic resonance imaging of the abdomen

Abdominal magnetic resonance imaging (MRI) is complicated by tissue motion as well as by weak tissue contrast. The major source of motion is respiration, which can be dealt with by breath-hold imaging or by respiratory triggering. Nevertheless, these commonly used methods are known to have their limitations in terms of patient burden as well as in image quality. We propose a method that allows ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 38 1  شماره 

صفحات  -

تاریخ انتشار 2011